Stephen Nowland Clark

A References

[ANSI89] American National Standards Institute, Programming L anguage C,
Document ANSI X 3.159-1989.

[Bodarky91] Bodarky, S., A Guide to Configuration Management and the
Revision Control System for Testbed Users, NISTIR 4646, August
1991.

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990.

[Clark90Db] Clark, S.N., Fed-X: The NIST Express Trandator, NISTIR 4371,
National Institute of Standards and Technology, Gaithersburg, MD,
August 1990.

[Clark90c] Clark, S.N., Libes.,, D., The NIST PDES Toolkit: Technical
Fundamentals, NISTIR 4335, National Institute of Standards and
Technology, Gaithersburg, MD, March 1992.

[Clark90d] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990.

[Clark90¢] Clark, S.N., NIST STEP Working Form Programmer’s Reference,

NISTIR 4353, National Institute of Standards and Technology,
Gaithersburg, MD, June 1990.

[Mason 91] Mason, H., ed., Industrial Automation Systems — Product Data
Representation and Exchange — Part 1: Overview and Fundamental
Principles, Version 9, |SO TC184/SC4/WG PMAG Document N50,
December 1991.

[Part21] ISO CD 10303 — 21, Product Data Representation and Exchange —
Part 21, Clear Text Encoding of the Exchange Structure, 1SO
TC184/SC4 Document N78, February, 1991.

[Part11] ISO 10303-11 Description Mehods: The EXPRESS Language
Reference Manual, SO TC184/SC4 Document N14, April 1991.

NIST Express Working Form Programmer’ s Reference Page 62

Stephen Nowland Clark

make install

Y ou can now build applications with Fed-X

7 Building Applications with Fed-X

Assuming the Fed-X toolkit has been built (as described in the previous section), build-
ing an application requires compiling and linking with the toolkit.

The easiest way to do thisis copy theMakefile and main.c from an extant Fed-X ap-
plication and modify it as necessary. For example, fedex is avery simple program

that callsthetoolkit to create aworking form and do nothing else. To get fedex, create
adirectory for it and check out the code:

mkdir ~/pdes/src/fedex
cd ~/pdes/src/fedex

co CheckOut

CheckOut

If you want to compile fedex itself, run make:.

cd ~/pdes/src/fedex
make

Now you may copy theMakefile andmain. c asappropriate for you application.

NIST Express Working Form Programmer’ s Reference Page 61

Stephen Nowland Clark

Changethe definition of PDES to reflect the root of the directories where you have your
Fed-X code stored. Notethat Make does not understand the ~ notation —thus, you must
provide the hardcoded path, which for this example is assumed to be /home / fred:

PDES=/home/fred/pdes

Fed-X will ultimately be stored in several libraries. A directory must be created to con-
tain thelibraries. It iscreated asfollows:

mkdir -p ~/pdes/arch/lib

If you are using bison, you should now create or link the bison library to this directory.
For example, to create the library from scratch:

cd ~/pdes/src/libbison
co CheckOut

CheckOut

make install

In order to build the libraries, several programs must exist. Theselivein ~pdes/bin
and it is normally sufficient to create a symbolic link between this and your own bin
directory as:

ln -s ~pdes/bin ~/pdes/bin

If you already have a directory by that name, you may link the individual files:
In -s ~/pdes/bin/* ~/pdes/bin

Fed-X iscomposed of sourcesin two directories and include filesin two other directo-
ries. The following example extracts the files from al four directories. After running
each CheckOut, expect a page or so of output as each file composing the toolkit is
checked out. Thecommand make install compilesthetoolkit and instalstheli-
brary versioninthe arch/1ib directory created previoudly.

cd ~/pdes/include/libmisc
co CheckOut

CheckOut

cd ~/pdes/src/libmisc

co CheckOut

CheckOut

make install

cd ~/pdes/include/express
co CheckOut

CheckOut

cd ~/pdes/src/express

co CheckOut

CheckOut

NIST Express Working Form Programmer’ s Reference Page 60

Stephen Nowland Clark

Error: ERROR_unknown_type class
Defined In: Type

Severity: SEVERITY_DUMP

M eaning: Fed-X internal error

Format: %d - the offending type class

%s - the context (function) in which the error occurred

Error: ERROR_wrong_operand_count

Defined In: Expression

Severity: SEVERITY_WARNING

M eaning: Mismatch between actual and expected (on the basis of code context) operand count
Format: %s - the operator

6 Building Fed-X

The Fed-X toolkit isdistributed in two ways. The usual form isthe latest release of the
software. An aternate form is the RCS archives [Bodarky91] which contain all prior
releases.

If you only havethe latest rel ease of the software, simply visit each directory named src
and type’'makeinstall’. Thiswill create the necessary libraries. Y ou may skip the rest
of this section.

Thefollowing discussion assumesyou havethe RCS archives. To build thetoolkit, you
must find out where the archives are and where you would like to build the toolkit. This
discussion assumes that the toolkit archives are stored in ~pdes and you would like to
builditin ~/pdes.

First create the directory in which you are going to keep all your files.
mkdir ~/pdes

Check out acopy of make rules.

cd ~/pdes

mkdir include

cd include

co ~pdes/include/make rules

make rules contains definitions common to all other parts of Fed-X as well as ap-
plications. If you examineit, you will find waysto customize thetoolkit. For example,
you can choose whether to use yacc or bison by changing this file. Only one change
will be described in detail here. Namely, you must tell make rules thedirectory in
which you are keeping all your Fed-X code.

In order to make this change, start by making it writeable:

chmod +w make rules

NIST Express Working Form Programmer’ s Reference Page 59

Error:

Defined In:

Severity:
M eaning:
Format:

Error

Defined In:

Severity:
M eaning:

Format:

Error:

Defined In:

Severity:
Meaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
Meaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
Meaning:

Format:

Stephen Nowland Clark

ERROR_syntax

Express

SEVERITY_EXIT

Unrecoverable syntax error

%s - description of error

%s - name of scope in which error occurred

ERROR_undefined_identifier
Pass2
SEVERITY_WARNING

An identifer was referenced which has not been declared. This error only produces a
warning because Fed-X does not deal with all of the scoping issuesin algorithms.

%s - the name of the identifier

ERROR_undefined _type

Pass2

SEVERITY_ERROR

An undeclared identifier was used in a context which requires atype.
%s - the name of the type

ERROR_unknown_expression_class

Expression

SEVERITY_DUMP

Fed-X internal error

%d - the offending expression class

%s - the context (function) in which the error occurred

ERROR_unknown_schema

Pass2

SEVERITY_WARNING

An unknown schemawas ASSUMEd
%s - the assumed schema name

ERROR_unknown_subtype

Pass2

SEVERITY_WARNING

An entity lists a subtype which is not itself declared as an entity.
%s - the subtype name

%s - the supertype name

ERROR_unknown_supertype
Pass2
SEVERITY_EXIT

An entity lists a supertype whichis not itself declared as an entity. Fed-X isunableto
proceed in this situation.

%s - the supertype name
%s - the subtype name

NIST Express Working Form Programmer’ s Reference Page 58

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Stephen Nowland Clark

ERROR_missing_supertype

Pass2

SEVERITY_ERROR

An entity which listsa particul ar subtype does not appear in that entity’ s supertypelist.
%s - the name of the supertype

%s - the name of the subtype

ERROR_nested_comment

Scanner

SEVERITY_WARNING

A start comment symbol (* was encountered within a comment.
-- none --

ERROR_overloaded_attribute

Pass2

SEVERITY_ERROR

An attribute name was previously declared in a supertype
%s - the attribute name

%s - the name of the supertype with the previous declaration

ERROR real_literal_expected

Expression

SEVERITY_WARNING

A non-real or non-literal was encountered in areal-literal context
-- none --

ERROR_set_literal_expected

Expression

SEVERITY_WARNING

A non-set or non-literal was encountered in a set-literal context
-- none --

ERROR_set scan_set_expected

Loop_Control

SEVERITY_WARNING

The control set for a set scan control is not a set
-- none --

ERROR_shadowed_declaration

Pass2

SEVERITY_WARNING

A symbol declaration shadows a definition in an outer (or assumed) scope.
%s - name of redeclared symbol

%d - line number of previous declaration

ERROR_string_literal_expected

Expression

SEVERITY_WARNING

A non-string or non-literal was encountered in a string-literal context
-- none --

NIST Express Working Form Programmer’ s Reference Page 57

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Error:

Defined In:

Severity:
M eaning:
Format:

Stephen Nowland Clark

ERROR_corrupted_type

Type

SEVERITY_DUMP

Fed-X internal error: a Type structure was corrupted
%s - function detecting error

ERROR_duplicate_declaration

Scope

SEVERITY_ERROR

A symbol was redeclared in the same scope
%s - name of redeclared symbol

%d - line number of previous declaration

ERROR_inappropriate_use

Scope

SEVERITY_ERROR

A symbol was used in a context which isinappropriate for its declaration.
%s - the name of the symbol

ERROR _include file

Scanner

SEVERITY_ERROR

An INCLUDE file could not be opened.
%s - the name of the file

ERROR_integer_expression_expected

Expression

SEVERITY_WARNING

A non-integer expression was encountered in an integer-only context
-- none --

ERROR integer_literal_expected

Expression

SEVERITY_WARNING

A non-integer or non-literal was encountered in an integer-literal context
-- none --

ERROR_logical_literal_expected

Expression

SEVERITY_WARNING

A non-logical or non-literal was encountered in alogical-literal context
-- none --

ERROR_missing_subtype

Pass?

SEVERITY_WARNING

An entity which listsa particular supertype does not appear in that entity’ s subtypelist.
%s - the name of the subtype

%s - the name of the supertype

NIST Express Working Form Programmer’ s Reference Page 56

Stephen Nowland Clark

Procedure: VARput_variable

Parameters: Variable var - variable to modify
Boolean va - new value for variable flag

Returns: void

Description: Set the value of the ' variable’ flag for avariable. Thisflagindicatesthat an algorithm
parameter isto be passed by reference, so that it can be modified by the callee.

Procedure: VARresolve

Parameters: Variable variable - variable to resolve
Scope scope - scope in which to resolve

Returns: void

Description: Resolveall symbol referencesin avariabledefinition. Thisiscalled, in due course, by
EXPRESSpass_2 ().

5 ExpressWorking Form Error Codes

The Error module, which is used to manipulate these error codes, is described in

[Clark90c].

Error: ERROR_bail_out

Defined In: Express

Severity: SEVERITY_DUMP

M eaning: Fed-X internal error

Format: -- hone --

Error: ERROR_control_boolean_expected

Defined In: Loop_Control

Severity: SEVERITY_WARNING

M eaning: The controlling expression for awhile or until does not seem to return boolean. Inthe
current implementation, this message can be erroneously produced because proper
types are not derived for complex expressions; thus, an expression which truly does
compute a boolean result may not appear to do so according to the Working Form.

Format: -- none --

Error: ERROR_corrupted_expression

Defined In: Expression

Severity: SEVERITY_DUMP

M eaning: Fed-X internal error: an Expression structure was corrupted

Format: %s - function detecting error

Error: ERROR_corrupted_statement

Defined In: Statement

Severity: SEVERITY_DUMP

M eaning: Fed-X internal error: a Statement structure was corrupted

Format: %s - function detecting error

NIST Express Working Form Programmer’ s Reference Page 55

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

VARInitialize

-- none --

void

Initialize the Variable module. Thisiscaled by EXPRESSinitialize (), andso
normally need not be called individually.

VARprint

Variable

void

PrintsaVariable. Exactly what isprinted can be controlled by setting various elements
of the variable var_print.

VARput_derived

Variable var - variable to modify

Boolean val - new value for derived flag

void

Set the value of the'derived’ flag for avariable. Thisflagis currently redundant, asa
derived attribute can beidentified by thefact that it hasan initializing expression. This
may not always be true, however.

VARput_initializer

Variable var - variable to modify
Expression init - initializer

void

Set the initializing expression for avariable.

VARput_inverse

Variable

Symbol

void

Set inverserelationship for avariable. See VARget_inverse.

VARput_offset

Variable var - variable to modify

int offset - offset to variable in local frame

void

Set avariable soffset initslocal frame. Notethat in the case of an entity attribute, this

offset isfromthe first locally defined attribute, and must be used in conjunction with
entity’sinitia offset (See ENTITYget attribute offset()).

VARput_optional

Variable var - variable to modify

Boolean val - value for optional flag

void

Set the value of the’ optional’ flag for avariable. Thisflag indicates that a particular
entity attribute need not have avalue when the entity isinstantiated. Itisinitialy false.

VARput_type

Variable

Type

void

Set the type of avariable.

Page 54

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

VARcreate

String name - name of variable to create
Typetype - type of variable to create
Error* errc - buffer for error code
Variable - the Variable created

Create anew variable. The reference class of the variableis, by default,
REF DYNAMIC. All specid flags associated with the variable (e.g., optional) are
initially false.

VARget_derived
Variable var - variable to examine
Boolean - value of variable' s derived flag

Retrieve the value of avariable' s 'derived’ flag. Thisflag indicatesthat an entity
attribute’ s value should always be computed by itsinitializer; no value will ever be
specified for it.

VARget_initializer

Variable var - variable to modify

Expression - variable initializer

Retrieve the expression used to initialize avariable.

VARget_inverse
Variable
Symbol

Returnsinverserelationship of avariable. Typically used after resolution, thiswill be
either aSet_Type or an Identifier of the entity of the variable.

VARget_name
Variable var - variable to examine
String - the name of the variable

VARget_offset
Variable var - variable to examine
int - offset to variable in local frame

Retrieve the offset to avariableinitslocal frame. Thisoffset aloneis not sufficient in
the case of an entity attribute (see ENTITYget attribute offset()).

VARget_optional
Variable var - variable to examine
Boolean - value of variable’ s optional flag

Retrieve the value of avariable' s’ optional’ flag. Thisflag indicates that a particular
entity attribute need not have a value when the entity is instantiated.

VARget_type
Variable var - variable to examine
Type - the type of the variable

VARget variable
Variable var - variable to examine
Boolean - value of variable' s variable flag

Retrieve thevalue of avariable’ s’ variable' flag. Thisflag indicatesthat an algorithm
parameter isto be passed by reference, so that it can be modified by the callee.

Page 53

4.18

4.19

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Use

Procedure:
Parameters:
Returns:
Description:

Variable

Type:
Supertype:

Stephen Nowland Clark

TYPEput_origina_type

TY PE new_type

TYPE original_type

void

Sets original type. See TYPEget_original_type.

TY PEput_where clause

Typetype - type to modify

Linked List - the type’s WHERE clause

void

Set the WHERE clause associated with atype. Each element of the list should be an
Expression which computesaLogical result.

TYPEresolve

Typetype - type to resolve

Scope scope - scope in which to resolve

void

Resolve al referencesin atype definition, and transform atype reference into the

appropriate Type or Entity construct. Thisis called, in due course, by
EXPRESSpass_2().

TYPE_REFget_full_name

Type_Reference type - type reference to examine

Expression - [qualified] identifier expression for type reference

Retrieve the identifier expression for atype reference. This expression consists of
identifier components assembled into binary expressions with Op_DOT.

TYPE_REFprint

Type_Reference

void

PrintsaType Reference. Exactly what is printed can be controlled by setting various
elements of the variable type_ref_print.

TYPE_REFput_full_name

Type_Reference type - type reference to modify

Expression name - [qualified] identifier expression for type reference
void

Set the identifier expression for atype reference.

USEresolve

Scope

void

resolves al references (from USE statements) in a scope.

Variable
Symbol

Page 52

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

TYPEget_name

Type type - type to examine
String - the name of the type
Return the name of the type.

TYPEget_origina_type

Typetype

Type

returns the original type, allowing away to see through TY PE declarations.

TYPEQet_size
Type type - type to examine
int - logical size of atype instance

Compute the size of an instance of sometype. Simpletypesall havesize 1, asdoes a
select type. The size of an aggregate type is the maximum number of elements an
instance can contain; and the size of an entity typeisitstotal attribute count. If an
aggregate type is unbounded, the constant TYPE UNBOUNDED SIZE isreturned.
This value may be ambiguous; the upper bound of the type should be relied on to
determined unboundedness. It isintended that the initial memory allocation for such
an aggregate should give spacefor TYPE_UNBOUNDED SIZE elements, and that this
should grow as needed. By returning some reasonable initia size, thiscal allowsits
return value to be used immediately as a parameter to a memory alocator, without
being checked for validity. Thisisthe approach taken in the STEP Working Form
[Clark90d], [Clark90€].

TYPEget_where clause
Type type - type to examine
Linked List - thetype’'s WHERE clause

Retrieve the WHERE clause associated with atype. Each element of the returned list
will be an Expression which computesaLogical result.

TYPEinitialize

-- hone --

void

Initialize the Type module. Thisiscalled by EXPRESSinitialize (), and so
normally need not be called individually.

TY PEprint

Type

void

PrintsaType. Exactly what is printed can be controlled by setting various elements of
the variable type print.

TY PEput_name

Typetype - type to modify
String name - new name for type
void

Set the name of atype.

Page 51

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

SEL_TYPEget_items

Select_Typetype - type to examine

Linked List - list of selectable types

Retrieve alist of the selectable types from a select type.

SEL_TYPEput_items

Select_Typetype - type to modify

Linked List list - list of selectable types

void

Set the list of selections for a select type. An instance of any these typesisalega

instantiation of the select type. Each Type on thelist should be of class
TYPE_ENTITY Or TYPE SELECT.

SZD _TYPEget_precision

Sized_Type type - type to examine

Expression - the precision specification of the type

Retrieve the precision specification from certain types. This specifies the maximum
number of significant digits or charactersin an instance of the type.

SZD_TYPEget varying

Sized_Type type - type to examine

Boolean - isthe string type of varying length?

Retrievethe’varying' flag from astringtype. Thisflagistrueif and only if thelength
of an instance may vary, up to the type’'s precision. It istrue by default.

SZD_TY PEprint

Sized_Type

void

Printsa Sized Type. Exactly what is printed can be controlled by setting various
elements of the variable szd_type_print.

SZD_TY PEput_precision

Sized_Type type - type to modify

Expression prec - the precision of the type

void

Set the precision of certain types. Thisisthe maximum number of significant digitsor
charactersin an instance.

SZD_TY PEput_varying

Sized_Typetype - type to modify

Boolean varying - is string type of varying length?

void

Set the’varying' flag of astring type. Thisflag indicatesthat thelength of an instance
may vary, up to thetype's precision. The default behavior for a string typeisto be
varying, i.e., strings areinitialized asif TYPEput_varying(string, true) were called.

TY PEcompatible

Typelhs_type - type for left-hand-side of assignment
Typerhs_type - type for right-hand-side of assignment
Boolean - are the types assignment compatible?

Determinewhether two types are assignment-compatible. 1t must be possibleto assign
avalueof rhs typeintoasotof 1hs type.

Page 50

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

COMP _TY PEget_items

Composed_Type

Linked List of Symbol

Retrieve a composed types list of identifiers.

COMP_TY PEprint
Composed_Type
void

Stephen Nowland Clark

PrintsaComposed_Type. Exactly what is printed can be controlled by setting various

elements of the variable comp_type print.

COMP_TY PEput_items

Composed_Type

Linked_List

void

Set the list of items for a Composed_Type.

ENT_TYPEget entity

Entity Typetype - type to examine

Entity - definition of entity type

Retrieve the (first) entity referenced by an entity type.

ENT_TYPEget_entity list
Entity_Type type - type to examine
Linked List - definition of entity type

Retrieve alist of the entities referenced by an entity type.

ENT_TYPEput_entity

Entity_Type type - type to modify

Entity entity - definition of type

void

Set the entity referred to by an entity type.

ENT_TYPEput_entity_list

Entity_Type type - type to modify

Linked List - definition of type

void

Set the list of entities referred to by an entity type.

ENUM_TY PEget_items
Enumeration_Type type - type to examine
Linked List - list of enumeration items

Retrieve an enumerated type' s list of identifiers. Each element of thislistisa

Constant.

ENUM_TY PEput_items
Enumeration_Type type - type to modify
Linked List list - list of enumeration items
void

Set thelist of identifiers for an enumerated type. Each element of thislist should be a

Constant.

NIST Express Working Form Programmer’ s Reference

Page 49

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

AGGR_TYPEget lower_limit

Aggregate Type type - type to examine

Expression - lower limit of the aggregate type

Retrieve an aggregate type's lower bound. For an array type, thisis the lowest index;

for other aggregate types, it specifies the minimum number of elements which the
aggregate must contain.

AGGR_TYPEget_upper_limit

Aggregate Type type - type to examine

Expression - upper limit of the aggregate type

Retrieve an aggregate type’ s upper bound. For an array type, thisisthe high index; for
other aggregate types, it specifies the maximum number of elements which the
aggregate may contain.

AGGR_TYPEprint

Aggregate Type

void

Printsan Aggregate Type. Exactly what isprinted can be controlled by setting various
elements of the variable aggr_type print.

AGGR_TYPEput_optiona

Aggregate Type type - type to modify

Boolean optional - are array elements optional ?

void

Set the ' optional’ flag for an array type. Thisflagindicatesthat all slotsin aninstance
of the type need not be filled.

AGGR_TYPEput_unique

Aggregate Type type - type to modify

Boolean unique - are aggregate elements required to be unique?

void

Set the’unique’ flag for an aggregate type. Thisflag indicates that an instantiation of
the type may not contain duplicate items.

AGGR_TYPEput_base type

Aggregate Type type - type to modify

Type base - the base type for this aggregate

void

Set the base type of an aggregate type. Thisisthe type of every element.

AGGR_TYPEput_limits

Aggregate Type type - type to modify

Expression lower - lower bound for aggregate

Expression upper - upper bound for aggregate

void

Set the lower and upper bounds for an aggregate type. For an array type, these are the

low and high indices; for other aggregates, these specify the minimum and maximum
number of elements which an instance may contain.

COMP_TY PEadd_items

Composed_Type

Linked_List

void

Add to the list of items for a Composed_Type.

Page 48

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Constant:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

TYPE_BINARY
Binary type.

TYPE_BOOLEAN
Boolean type.

TYPE_GENERIC
The type’generic.’

TYPE_INTEGER
Integer type with default precision.

TYPE_LOGICAL
Logical type.

TYPE_META
Metatype (for TY PEOF expressions).

TYPE_NUMBER
Number type.

TYPE_REAL
Real type with default precision.

TYPE_SET_OF GENERIC
Type for unconstrained set of generic.

TYPE_STRING
String type with default precision (Iength).

AGGR_TYPEget_optional
Aggregate Type type - type to examine
Boolean - are elements of this aggregate optional ?

Retrieve the ’optional’ flag from an aggregate type. Thisflagistrueif and only if a
legal instantiation of the type need not have al of its dlotsfilled.

AGGR_TYPEget_unique
Aggregate Type type - type to examine
Boolean - must elements of this aggregate be unique?

Retrievethe’unique’ flag from an aggregatetype. Thisflagistrueif andonly if alegal
instantiation of the type may not contain duplicates.

AGGR_TYPEget_bhase_type
Aggregate Type type - type to examine
Type - the base type of the aggregate type

Retrieve the base type of an aggregate. Thisisthe type of each element of an
instantiation of the type.

Page 47

Type: List_Type
Supertype: Aggregate Type
Type: Set_Type
Supertype: Aqggregate Type

Private Type:

Composed_Type

Stephen Nowland Clark

Supertype: Type

Type: Entity_Type
Supertype: Composed_Type
Type: Enumeration_Type
Supertype: Composed_Type
Type: Select_Type
Supertype: Composed_Type
Type: Generic_Type
Supertype: Type

Type: Logica_Type
Supertype: Type

Type: Boolean Type
Supertype: Logica_Type
Type: Number_Type
Supertype: Type

Private Type: Sized Type
Supertype: Type

Type: Integer_Type
Supertype: Sized_Type
Type: Real_Type
Supertype: Sized_Type
Type: String_Type
Supertype: Sized_Type
Type: Type_Reference
Supertype: Type

Constant: TYPE_AGGREGATE

Description: Type for general aggregate of generic.

NIST Express Working Form Programmer’ s Reference Page 46

4.17

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Type
Private Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Stephen Nowland Clark

SYMBOLget_resolved

Symbol symbol - symbol to examine
Boolean - is the symbol resolved?

Test whether a symbol has been resolved.

SYMBOLinitialize

-- hone --

void

Initialize the Symbol module. Thisiscalled by EXPRESSinitialize (), and so
normally need not be called individually.

SYMBOLprint

Symbol

void

PrintsaSymbol. Exactly what is printed can be controlled by setting various elements
of the variable symbol_print.

SYMBOLput_line_number

Symbol symbol - symbol to modify
int number - line number for symbol
void

Set asymbol’ s line number.

SYMBOL put_name

Symbol symbol - symbol to name
String name - name of symbol
void

Set the name of a symbol.

SYMBOLput_resolved

Symbol symbol - symbol to mark resolved

void

Mark asymbol as being resolved. Thisisnormally called by the client
XXXput_resolved () functions, since asymbol cannot itself be resolved.

Type
Symbol

Aggregate Type
Type

Array_Type
Aggregate Type

Bag Type
Aggregate Type

Binary_Type
Type

Page 45

4.16

NIST Express Working Form Programmer’ s Reference

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Symbol

Type:
Supertype:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Stephen Nowland Clark

RETprint

Return statement

void

PrintsaReturn statement. Exactly what is printed can be controlled by setting various
elements of the variable return_print.

STMTinitialize

-- none --

void

Initialize the Statement module. Thisiscalled by EXPRESSinitialize (),andso
normally need not be called individually.

STMTresolve

Statement statement - statement to resolve

Scope scope - scope in which to resolve

void

Resolve al symbol referencesin astatement. Thisis called, in due course, by
EXPRESSpass_2 ().

WITHcreate

Expression expression - controlling expression for the with
Statement body - controlled statement for the with

Error* errc - buffer for error code

With_Statement - the with statement created

Create awith statement.

WITHget_body
With_Statement statement - statement to examine
Statement - statement forming the body of the with statement

WITHget_control

With_Statement statement - statement to examine

Expression - the controlling expression

Retrieve the controlling expression from awith statement. Thisis the expression
which will be prepended to any expression which cannot otherwise be evaluated in the
current scope.

Symbol
-- none --

SYMBOLget_line_number
Symbol symbol - symbol to examine
int - line number of symbol

SYMBOLget_name
Symbol symbol - symbol to examine
String - name of symbol

Page 44

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

LOOPprint

L oop statement

void

Prints aloop statement. Exactly what is printed can be controlled by setting various
elements of the variable loop_print.

PCALLcreate

Procedure procedure - procedure called by statement
Linked List parameters - list of actual parameters
Error* errc - buffer for error code

Procedure_Call - the procedure call created

Create aprocedure call statement. The elements of the actual parameter list should be
Expressionswhich compute the values to be passed to the procedure.

PCALLget_procedure

Procedure Call statement - statement to examine
Procedure - procedure called by this statement

Retrieve the procedure called by a procedure call statement.

PCALLget _parameters
Procedure_Call statement - statement to examine
Linked List - actual parameters to this call

Retrieve the actual parametersfor aprocedure call statement. The elementsof thislist
are Expressionswhich compute the values to be passed to the called routine.

PCALLprint

Procedure_Call statement

void

PrintsaProcedure_Call statement. Exactly what isprinted can be controlled by setting
various elements of the variable pcall_print.

PCALLput_procedure

Procedure_Call statement - statement to modify

Procedure procedure - definition of called procedure

void

Set the actual procedure called by a procedure call statement. 1f a procedure stub

(unresolved symbo1l) ispresent in the statement, it isreplaced such that all references
remain valid.

RETcreate

Expression expression - expression to compute return value
Error* errc - buffer for error code

Return_Statement - the return statement created

Create areturn statement.

RETget_expression

Return_Statement statement - statement to examine

Expression - expression returned by this statement

Retrieve the expression whose value is computed and returned by a return statement.

Page 43

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

COMP_STMTprint

Compound_Statement

void

Prints a compound statement. Exactly what is printed can be controlled by setting
various elements of the variable comp_stmt_print.

CONDcreate

Expression test - the condition for the if

Statement then - code executed when test == true
Statement otherwise - code executed when test == false
Error* errc - buffer for error code

Conditional - the if statement created

Create an if statement. For asimpleif
third parameter to STATEMENT NULL.

then .. withno elseclause, set the

CONDget_else clause
Conditional statement - statement to examine
Statement - code for "else’ branch

CONDget_condition
Conditional statement - statement to examine
Expression - the test condition

CONDget_then clause
Conditional statement - statement to examine
Statement - code for "then’ branch

CONDprint

Conditional statement

void

Prints a conditional statement. Exactly what is printed can be controlled by setting
various elements of the variable cond_print.

LOOPcreate

Linked List controls - list of controls for the loop
Statement body - statement to be repeated

Error* errc - buffer for error code

Loop - the loop statement created

Create aloop statement. The elements of the controlslist should be
Loop_Controls.

LOOPget_body

L oop statement - statement to examine

Statement - the body of the loop

Retrieve the body (repeated portion) of aloop statement

LOOPget_controls
L oop statement - statement to examine
Linked List - list of loop controls

Retrieve alist of aloop statement’s controls. The elements of thislist are
Loop_Controls.

Page 42

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ASSIGNget_|hs

Assignment statement - statement to examine
Expression - |eft-hand-side of assignment statement
Return left-hand-side of the assignment statement.

ASSIGNget_rhs

Assignment statement - statement to examine
Expression - right-hand-side of assignment statement
Return right-hand-side of the assignment statement.

ASSIGNprint

Assignment statement

void

Prints an assignment statement. Exactly what is printed can be controlled by setting
various elements of the variable assign_print.

CASEcreate

Expression selector - expression to case on

Linked List case - list of case branches

Error* errc - buffer for error code

Case_Statement - the case statement created

Create a case statement. The elements of the case branch list should becase Items.

CASEget _items
Case_Statement statement - statement to examine
Linked List - case branches

Retrieve alist of the branches in a case statement. The elements of thislist are
Case_ItemsS

CASEget_selector
Case_Statement statement - statement to examine
Expression - the selector for the case statment

Retrieve the selector from a case statement. Thisisthe expression whosevalueis
compared to each case label in turn.

CASEprint

Case_Statement

void

Prints a case statement. Exactly what is printed can be controlled by setting various
elements of the variable case print.

COMP_STMTcreate

Linked List statements - list of compound statement el ements
Error* errc - buffer for error code

Compound_Statement - the compound statement created

Create a compound statement. The elements of the statements list should be
Statements, in the order they appear in the compound statement to be represented.

COMP_STMTget_items

Compound_Statement statement - statement to examine

Linked List - list of statementsin compound

Retrieve alist of the Statements comprising a compound statement.

Page 41

4.15

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Statement

Private Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Procedure:
Parameters:

Returns:
Description:

Stephen Nowland Clark

SCOPEput_resolved

Scope scope - scope to modify

void

Set the 'resolved’ flag for ascope. This normally should only be called by
SCOPEresolve (), which actually resolves the scope.

SCOPEresolve

Scope scope - scope to resolve

Schemas schemas - all conceptual schemas in the expressfile

void

Resolveall symbol referencesin ascope. Inorder to avoid problemsdueto references
to as-yet-unresolved symbols, scope resolution is broken into two passes, which are
implemented by SCOPEresolve passl () and SCOPEresolve pass2 ().
Thesetwo are called in turn by SCOPEresolve ().

Statement
Construct

Assignment
Statement

Compound_Statement
Statement

Conditiona
Statement

Loop
Statement

Procedure Call
Statement

Return_Statement
Statement

With_Statement
Statement

ASSIGNcreate

Expression Ihs - the |eft-hand-side of the assignment
Expression rhs - the right-hand-side of the assignment
Error* errc - buffer for error code

Assignment - the assignment statement created
Create an assignment statement.

Page 40

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

SCOPEget_resolved

Scope scope - scope to examine

Boolean - has this scope been resolved?

Check whether symbol references in a scope have been resolved.

SCOPEQget_superscopes

Scope scope - scope to examine

Linked List - list of next outer (containing) scopes
Retrieve alist of a scope’s parent scope.

SCOPEQet_types
Scope scope - scope to examine
Linked List - list of locally defined types

Retrieve alist of the types defined locally in ascope. The elements of thislist are
TypeS. Thelist should be LISTfree’d when no longer needed.

SCOPEQet_uses

Scope

Linked List

Returns alist of all references (from USE statements) from an entity.

SCOPEget_variables
Scope scope - scope to examine
Linked_List - list of locally defined variables

Retrieve alist of the variables defined locally in ascope. The elements of thislist are
Variables. Thelist should be LISTfree’d when no longer needed.

SCOPEinitialize

-- hone --

void

Initialize the Scope module. Thisiscalled by EXPRESSinitialize (), and so
normally need not be called individually.

SCOPEIlookup

Scope scope - scope in which to look up name
String name - name to look up

Boolean walk - look in parent and imported scopes?
Error* errc - buffer for error code

Symbol - definition of nhame in scope

Retrieve aname's definition in a scope. If the scope does not define the name, the
parent scopes are successively queried. If no definition isfound, SYMBOL NULL is
returned.

ERROR_undefined identifier - no definition wasfound

SCOPEprint

Scope

void

Prints a Scope. Exactly what is printed can be controlled by setting various elements
of the variable scope_print.

Page 39

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

SCOPEdefine_symbol

Scope scope - scope in which to define symbol

Symbol symdef - new symbol definition

Error* errc - buffer for error code

void

Define a symbol in a scope.

Reports all errorsdirectly, so only ERROR _subordinate failed ispropagated.

SCOPEdump

Scope scope - scope to dump

FILE* file - file stream to dump to

void

Dump aschemato afile. Thisfunction is provided for debugging purposes.

SCOPEget_agorithms
Scope scope - scope to examine
Linked_List - list of locally defined algorithms

Retrievealist of thealgorithms defined locally in ascope. The elementsof thislist are
Algorithms. Thelist should be LISTfree’d when nolonger needed.

SCOPEget_constants
Scope scope - scope to examine
Linked List - list of locally defined constants

Retrieve alist of the constants defined locally in ascope. The elements of thislist are
Constants. Thelist should be LISTfree’d when no longer needed.

SCOPEget_entities
Scope scope - scope to examine
Linked List - list of locally defined entities

Retrieve alist of the entities defined locally in ascope. The elements of thislist are
Entitys. Thelist should be LISTfree’d when nolonger needed. Thisfunctionis
considerably faster than SCOPEget entities superclass order (), and
should be used whenever the order of the entities on the list is not important.

SCOPEget_entities superclass_order
Scope scope - scope to examine
Linked List - list of locally defined entitiesin superclass order

Retrieve alist of the entities defined locally in ascope. The elements of thislist are
Entitys. Thelist shouldbeL.ISTfree'dwhennolonger needed. Thelist returned
is ordered such that each entity appears before all of its subtypes.

SCOPEget_imports

Scope scope - scope to examine

Linked List - 'assumed’ schemata

Retrieve alist of the schemata assumed in ascope. The elements of thislist are
Schemas. Thelist should not be LISTfree’d.

SCOPEget_references

Scope

Dictionary

All the references (from all the REFERENCE statements) of an entity.

Page 38

4.14

NIST Express Working Form Programmer’ s Reference

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Scope

Type:
Supertype:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Stephen Nowland Clark

SCHEMAget_name
Schema schema - schemato examine
String - the schema’ s name

SCHEMAiInitialize

-- hone --

void

Initialize the Schemamodule. Thisiscalled by EXPRESSinitialize (), andso
normally need not be called individually.

SCHEMATresolve

Schema schema - schemato resolve

Schemas schemas - all schemasin the Expressfile

void

Resolve all symbol references within aschema. In order to avoid problems due to
referencesto as-yet-unresolved symbols, schemaresolution is broken into two passes,
which are implemented by SCHEMAresolve passl () and

SCHEMAresolve pass2 (). Thesetwo arecalled in turn by

SCHEMAresolve ().

Scope
Symbol

SCOPEadd reference

Scope

Linked List

void

Adds alist of references (from one REFERENCE statement) to an entity.

SCOPEadd _use

Scope

Linked_List

void

Adds alist of references (from one USE statement) to an entity.

SCOPEadd_superscope

Scope scope - scope to modify

Scope parent - additional parent scope
void

Adds an immediate parent to a scope.

SCOPEcreate
Scope scope - next higher scope
Scope - the scope created

Create an empty scope. Note that the connection between thisnew scope and its parent
(the sole parameter to this call) is uni-directional: the parent does not immediately
know about the child.

Page 37

412

4.13

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Reference

Procedure:
Parameters:
Returns:
Description:

Schema

Type:
Supertype:

Type:
Supertype:

Procedure:

Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Stephen Nowland Clark

INCR_CTLget_increment

Increment_Control control - increment control to examine
Expression - amount to increment by on each iteration
Retrieve the increment expression from an increment control.

INCR_CTLget_start

Increment_Control control - increment control to examine
Expression - initial expression for controlling expression
Retrieve the initial value from an increment control.

LOOP_CTLinitiaize

-- none --

void

Initializethe Loop Control module. Thisiscalledby EXPRESSinitialize (),and
so normally need not be called individually.

LOOP_CTLresolve

Loop_Control control - control to resolve

Scope scope - scope in which to resolve

void

Resolve al symbol referencesin aloop control. Thisiscalled, in due course, by
EXPRESSpass_2 ().

REFERENCEresolve

Scope

void

resolves all referencesin a scope.

Schema
Scope

Schemas
Dictionary

SCHEMAcreate

String name - name of schemato create
Scope scope - local scope for schema
Error* errc - buffer for error code
Schema - the schema created

Create a new schema.

SCHEMAdump

Schema schema - schemato dump

FILE* file - file to dump to

void

Dump aschemato afile. Thisfunction is provided for debugging purposes.

Page 36

Type:
Supertype:

Type:
Supertype:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:
Requires:
Errors:

Procedure:

Parameters:

Returns:
Requires:
Errors:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

Until_Control
Conditiona_Control

While_Control
Conditiona_Control

INCR_CTLcreate

Expression control - controlling expression
Expression start - initial value

Expression end - terminal value

Expression increment - amount by which to increment
Error* errc - buffer for error code

Increment_Control - the loop control created

INCR_CTLprint

Increment_Control

void

Prints an Increment_Control. Exactly what is printed can be controlled by setting
various elements of the variable incr_ctl_print.

UNTILcreate

Expression control - termination condition

Error* errc - buffer for error code

Until - the loop control created

OBJis kind_of(EXPget_type(contral), Class Logica Type)

ERROR_control boolean expected - controlling expressionisnot logica

WHILEcreate

Expression control - continuation condition

Error* errc - buffer for error code

While - the loop control created

OBJis kind_of(EXPget_type(control), Class Logical_Type)

ERROR_control boolean expected - controlling expressionis not logical

LOOP_CTLget_controlling_expression

Loop_Control control - loop control to examine

Expression - controlling expression

Retrieve aloop control’s controlling expression. For while and until controls, thisis

the termination or continuation condition, respectively. For iteration and set scan
controls, thisis the expression which receives successive valuesin the iteration.

LOOP_CTLprint

Loop_Control

void

PrintsaLoop_Control. Exactly what is printed can be controlled by setting various
elements of the variable loop_ctl_print.

INCR CTLget fina

Increment_Control control - increment control to examine
Expression - terminal value for controlling expression
Retrieve the final value from an increment control.

Page 35

411

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:

Procedure:
Parameters:
Returns:

Stephen Nowland Clark

TERN_EXPcreate

Op_Code

Expression

Expression

Expression

Error *

Ternary_Expression

Creates and returns a ternary expression

TERN_EXPget_second_operand
Ternary_Expression

Expression

Returns second operand of aternary expression

TERN_EXPget_third_operand
Ternary_Expression

Expression

Returns third operand of aternary expression

TERN_EXPprint

Ternary_Expression

void

Prints a Ternary_Expression. Exactly what is printed can be controlled by setting
various elements of the variable tern_exp_print.

UN_EXPcreate

Op_Code op - operation

Expression operand - operand

Error* errc - buffer for error code
Unary_Expression - the expression created
Create a unary operation expression.

UN_EXPget_operand
Unary_Expression expression - expression to examine
Expression - the operand of the expression

UN_EXPget_operator
Unary_EXxpression expression - expression to examine
Op_Code - the operator invoked by the expression

L oop Control

Type:
Supertype:

Type:
Supertype:

Private Type:
Supertype:

Loop_Control
Construct

Increment_Control
Loop_Control

Conditiona_Control
Loop_Control

Page 34

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

QUERY get_source

Query expression - query expression to examine

Expression - the source aggregation

bRetriexll_eésd the expression which computes the aggregation against which a query will
e applied.

QUERY get_variable
Query expression - query expression to examine
Variable - the local iteration variable of the query

QUERY print

Query Expression

void

PrintsaQuery Expression. Exactly what is printed can be controlled by setting various
elements of the variable query_print.

REAL_LITcreate

Real value - value for literal
Error* errc - buffer for error code
Real_Litera - theliteral created
Create areal literal expression.

REAL_LITget value

Real_Literal literal - real literal to examine
Error* errc - buffer for error code

Real - the literal’ s value

REAL_LITprint

Real_Literal

void

PrintsaReal_Literal. Exactly what is printed can be controlled by setting various
elements of the variablereal_lit_print.

STR_LITcreate

String value - value for literal
Error* errc - buffer for error code
String_Literal - the literal created
Create a string literal expression.

STR_LITget value

String_Literal literal - string literal to examine
Error* errc - buffer for error code

String - the literal’ s value

STR_LITprint

String_L.iteral

void

Printsa String_Literal. Exactly what is printed can be controlled by setting various
elements of the variable str_lit_print.

Page 33

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

LOG_LITprint

Logica _Litera

void

PrintsaLogical_Literal. Exactly what is printed can be controlled by setting various
elements of the variable log_lit_print.

ONEOFcreate

Linked List selections- list of selections for oneof()
Error* errc - buffer for error code

One_Of Expression - the oneof expression created
Create a oneof () expression.

ONEOFget_selections
One_Of Expression expression - expression to examine
Linked List of Expression - list of selections for oneof ()

ONEOFprint
One_Of Expression
void

PrintsaOne_Of Expression. Exactly what is printed can be controlled by setting
various elements of the variable oneof_print.

ONEOFput_selections

One_Of_Expression expression - expression to modify
Linked List selections - list of selections for oneof ()
void

Set the list of selections for a oneof() expression.

opcode_print

Op_Code

void

Despite the name, this function returns a string describing the opcode.

OPget_number_of _operands
Op_Code operation - the opcode to query
int - number of operands required by this operator.

QUERY create

String ident - local identifier for source e ements

Expression source - source aggregate to query

Expression discriminant - discriminating expression for query
Error* errc - buffer for error code

Query - the query expression created

Create a query expression.

QUERY get_discriminant

Query expression - query expression to examine

Expression - the discriminant expression

Retrieves the discriminant expression from a query expression. The discriminant
expresses the query criteria.

Page 32

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

IDENTcreste

Symbol ident - identifier referenced by expression
Error* errc - buffer for error code

Identifier - the identifier expression created
Create a simple identifier expression.

IDENTget_identifier
Identifier expression - expression to examine
Symbol - the identifier referenced in the expression

IDENTprint

Identifier

void

Prints an Identifier. Exactly what is printed can be controlled by setting various
elements of the variable ident_print.

IDENTput_identifier

Identifier expression - identifier expression to modify
Symbol identifier - the referent of the identifier

void

Set the referent of an identifier expression.

INT_LITcreate

Integer value - value for literal
Error* errc - buffer for error code
Integer_Litera - theliteral created
Create an integer literal expression.

INT LITget value

Integer_Literal literal - integer literal to examine
Error* errc - buffer for error code

Integer - the literal’ s value

INT_LITprint

Integer_Litera

void

Printsan Integer_Literal. Exactly what is printed can be controlled by setting various
elements of the variableint_lit_print.

LOG LITcreate

Logica value - vauefor literal
Error* errc - buffer for error code
Logica_Litera - theliteral created
Create alogical literal expression.

LOG_LITget value

Logical_Literal literal - logical literal to examine
Error* errc - buffer for error code

Logical - theliteral’s value

Page 31

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

EXPresolve

Expression expression - expression to resolve

Scope scope - scope in which to resolve

void

Resolve al symbol referencesin an expression. Thisiscalled, in due course, by
EXPRESSpass_2().

EXPresolve_qualification

Expression expression - expression to resolve

Scope scope - scope in which to resolve

Error* errc - buffer for error code

Symbol - the symbol referenced by the expression

Retrieves the symbol definition referenced by a (possibly qualified) identifier.

FCALLcreate

Algorithm algorithm - algorithm invoked by expression
Linked List parameters - actual parametersto function call
Error* errc - buffer for error code

Function_Call - the function call created

Create afunction call expression.

-- hone --

FCALLget agorithm

Function_Call expression - function call expresion to examine
Algorithm - the algorithm invoked by the function call
Retrieves the algorithm of the function call.

FCALLget_parameters

Function_Call expression - function call expression to examine

Linked List of Expression - list of actual parameters

Retrieve the actual parameter Expressionsfrom afunction call expression.

FCALLprint

Function_Call

void

Prints a Function_Call. Exactly what is printed can be controlled by setting various
elements of the variable fcall_print.

FCALLput_algorithm

Function_Call expression - function call expression to modify
Algorithm agorithm - algorithm invoked by expression

void

Set the algorithm invoked by a function call expression.

FCALLput_parameters

Function_Call expression - function call expression to modify

Linked List parameters - list of actual parameters

void

Set the actual parameter list to afunction call expression. The elements of the

parameter list should be Expressions. Thetypesof theactual parameters currently
are not verified against the formal parameter list of the called algorithm.

Page 30

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

BIN_LITget_value

Binary_Litera

Error *

Binary

Returns the binary corresponding to the binary_literal

BIN_LITprint

Binary_Literal

void

Printsan Binary_Literal. Exactly what is printed can be controlled by setting various
elements of the variable bin_lit_print.

EXPas _string

Expression expression - expression to print as string

String - string representation of expression

Generate the string representation of an expression. Only (qualified) identifiers are
currently supported.

EXPget_integer_value

Expression expression - expression to evaluate

Error* errc - buffer for error code

int - value of expression

Compute the value of an integer expression. Currently, only integer literals can be

evaluated; other classes of expressions evaluate to 0 and produce awarning message.
EXPRESSION NULL evaluatesto 0, aswell.

ERROR_integer expression_ expected

EXPget_type
Expression expression - expression to examine
Type - the type of the value computed by the expression

EXPinitialize

-- none --

void

Initialize the Expression module. Thisiscaled by EXPRESSinitialize (), and
so normally need not be called individually.

EXPprint

Expression

void

Prints an Expression. Exactly what is printed can be controlled by setting various
elements of the variable exp_print.

EXPput_type

Expression expression - expression to modify

Typetype - the type of result computed by the expression

void

Set the type of an expression. Thiscall should actually be unnecessary: the type of an
expression is derivable from its definition. While thisis currently true in the case of

literals, there are no rules in place for deriving the type from, for example, the return
type of afunction or an operator together with its operands.

Page 29

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ARY_EXPget_operator
Ary_Expression

Op_Code

Return operator of expression

ARY_EXPprint

Ary_Expression

void

Printsan Ary_Expression. Exactly what is printed can be controlled by setting various
elements of the variable ary_exp_print.

ARY_EXPput_operand

Ary_Expression - Unary expression to modify
Expression - Expression to become new operand
void

Modifies the operand of a unary expression

BIN_EXPcreate

Op_Code op - operation

Expression operandl - first operand
Expression operand? - second operand
Error* errc - buffer for error code

Binary Expression - the expression created
Create a binary operation expression.

BIN_EXPget_first_operand

Binary Expression expression - expression to examine
Expression - the first (Ieft-hand) operand of the expression
Return first operand of binary expression.

BIN_EXPget_operator

Binary Expression expression - expression to examine
Op_Code - the operator invoked by the expression
Return operator of binary expression.

BIN_EXPget_second operand

Binary Expression expression - expression to examine
Expression - the second (right-hand) operand of the expression
Return second operand of binary expression.

BIN_EXPprint

Bin_Expression

void

Printsan Bin_Expression. Exactly what is printed can be controlled by setting various
elements of the variable bin_exp_print.

BIN_LITcreate
Binary

Error *

Binary_Literal
Creates abinary literal

Page 28

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Constant:
Type:

Constant:
Type:

Constant:
Type:

Constant:
Type:

Constant:
Type:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

Logical_Literal
Literal

Read_Litera
Literal

String_Litera
Literal

Query
Expression

LITERAL_E - ared literal with the value 2.18281...
Real_Litera

LITERAL_EMPTY_SET - ageneric set literal representing the empty set
Aggregate Literal

LITERAL_INFINITY - anumeric literal representing infinity
Integer_Literal

LITERAL_PI - ared literal with the value 3.1415...
Redl_Literal

LITERAL_ZERO - an integer literal with thevalue 0
Integer_Literal

AGGR_LITcreate

Typetype - type of aggregate literal to be created
Linked_List value - valuefor literal

Error* errc - buffer for error code

Aggregate Litera - theliteral created

Create an aggregate literal expression.

AGGR_LITget vaue

Aggregate Literal literal - aggregate literal to examine
Error* errc - buffer for error code

Linked_List of Generic - the literal’ s contents
Retrieve the value of an aggregate literal, asalist.

AGGR_LITprint

Aggregate Literal

void

Prints an Aggregate Literal. Exactly what is printed can be controlled by setting
various elements of the variable aggr_lit_print.

ARY_EXPget_operand

Ary_Expression operand

Unary Expression - the expression created
Create a unary operation expression

Page 27

4.10

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Expression

Type:
Supertype:

Private Type:

Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Private Type:

Supertype:

Type:
Supertype:

Type:
Supertype:

Type:
Supertype:

Stephen Nowland Clark

ENTITY put_uniqueness list

Entity entity - entity to modify

Linked List list - uniqueness list

void

Set the uniqueness list of an entity. Each element of the uniqueness list should itself

bealist of variablesand/or (unresolved) Symbols referencing entity attributes.
Each of these sublists specifies a single uniqueness set for the entity.

ENTITYresolve

Entity entity - entity to resolve

void

Resolve al symbol referencesin an entity definition. Thisfunction iscalled, in due
course, by EXPRESSpass_2 ().

Expression
Construct

Ary_Expression
Expression

Binary Expression
Ary Expression

Ternary_Expression
Ary_Expression

Unary_Expression
Ary Expression

One_Of Expression
Expression

Function_Call
One_Of Expression

Identifier
Expression

Litera
Expression

Aggregate Literal
Literal

Binary_Literal
Literal

Integer_Literal
Litera

Page 26

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ENTITY put_abstract

Entity

Boolean

void

Define an entity to be abstract or not.

ENTITY put_constraints

Entity entity - entity to modify

Linked List constraints - list of constraints which entity must satisfy

void

Set the constraints on an entity. The elements of the constraints list should be
Expressionsof type TY LOGICAL.

ENTITY put_inheritance _count

Entity entity - entity to modify

int count - number of inherited attributes

void

Set the number of attributes inherited by an entity. This should be computed

automatically (perhaps only when needed), and this call removed. The count is
currently computed by ENTITYresolve ().

ENTITY put_mark

Entity entity - entity to modify

int value - new mark for entity

void

Set an entity’s mark. This mark is used, for example, in SCOPE_dfs (), part of
SCOPEget entities superclass_order (), to mark each entity as having
been touched by the traversal.

ENTITY put_name

Entity entity - entity to modify
String name - entity’s name
void

Set the name of an entity.

ENTITY put_subtypes

Entity entity - entity to modify

Expression expression - controlling subtype expression
void

Set the (immediate) subtypes list of an entity.

ENTITY put_supertypes

Entity entity - entity to modify

Linked List list - superclass entities

void

Set the (immediate) supertype list of an entity. The elements of the list should be
Entitysor (unresolved) Symbols.

Page 25

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ENTITY get_supertype

Entity

String

Entity

Given name, returns supertype

ENTITY get_supertypes
Entity entity - entity to examine
Linked List of Entity - immediate supertypes of this entity

Retrieve alist of an entity’simmediate supertypes. Thislist should not be
LISTfree'd.

ENTITYget_uniqueness list

Entity entity - entity to examine

Linked List of Linked List - thisentity’s uniqueness sets

Retrieve an entity’ suniquenesslist. Each element of thislist isitself alist of
Variables, specifying auniquenessset for theentity. The uniquenesslist should not
beLIsTfree’d, nor should any of the component lists.

ENTITY has_immediate_subtype

Entity parent - entity to check children of
Entity child - child to check for

Boolean - is child adirect subtype of parent?

ENTITY has_immediate_supertype

Entity child - entity to check parentage of
Entity parent - parent to check for

Boolean - is parent a direct supertype of child?

ENTITY has_subtype

Entity parent - entity to check descendants of

Entity child - child to check for

Boolean - does parent’ s subclass tree include child?

ENTITY has_supertype

Entity child - entity to check parentage of

Entity parent - parent to check for

Boolean - does child’ s superclass chain include parent?

ENTITYinitialize

-- hone --

void

Initialize the Entity module. Thisiscalled by EXPRESSinitialize (), and so
normally need not be called individually.

ENTITY print

Entity

void

Printsan Entity. Exactly what is printed can be controlled by setting various el ements
of the variable entity_print.

Page 24

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ENTITYget_mark

Entity entity - entity to examine

int - entity’ s current mark

Retrieve an entity’smark. See ENTITYput mark ().

ENTITYget_name

Entity entity - entity to examine
String - entity name

Return the name of an entity.

ENTITY get_named_attribute

Entity entity - entity to examine

String name - name of attribute to retrieve
Variable - the named attribute of this entity

Retrievethe definition of an entity attribute by name. If the entity hasno attribute with
the given name, VARIABLE NULL is returned.

ENTITYget_named_attribute offset

Entity entity - entity to examine

String name - name of attribute for which to retrieve offset
int - offset to named attribute of this entity

Retrieve the offset to an entity attribute by name. If the entity has no attribute with the
given name, -1 isreturned. Thiscall is slower than

ENTITYget attribute_offset (), and so should be avoided when the actual
attribute definition is already available.

ENTITYget size
Entity entity - entity to examine
int - storage size of instantiated entity

Compute the storage size of an instantiation of thisentity. Thisisthetotal number of
attributes which it contains.

ENTITYget_subtype

Entity

String

Entity

Given name, returns subtype

ENTITYget_subtype expression

Entity entity - entity to examine

Expression - immediate subtype expression

Retrieve the controlling expression for an entity’ simmediate subtype list.

ENTITY get_subtypes

Entity entity - entity to examine

Linked List of Entity - immediate subtypes of this entity
Retrieve alist of an entity’ simmediate subtypes.

Page 23

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ENTITY delete_instance

Entity entity - entity to modify
Generic instance - instance to delete
void

Deletes an instance of the entity.

ENTITY get_abstract

Entity

Boolean

returns boolean defining when entity is abstract or not

ENTITYget_all_attributes
Entity entity - entity to examine
Linked List of Variable - all attributes of this entity

Retrieve the complete attribute list of an entity. The attributes are ordered as required
by the STEP Physical Fileformat [Part21]. Thislist should beLISTfree’dwhenno
longer needed.

ENTITY get_attribute _offset

Entity entity - entity to examine

Variable attribute - attribute to retrieve offset for
int - offset to given attribute

Retrieve offset to an entity attribute. Thisoffset takesinto account al superclassof the
entity:. itiscomputed by ENTITYget initial offset (entity) +
VARget offset (attribute). If theentity does notinclude the attribute, -1 is
returned. Thiscall should be preferred over
ENTITYget named attribute offset ().

ENTITYget_attributes
Entity entity - entity to examine
Linked List of Variable - local attributes of this entity

Retrieve the local attribute list of an entity. The local attributes of an entity are those
which are defined by the entity itself (rather than being inherited from supertypes).
Thislist should be LISTfree’d when no longer needed.

ENTITY get_constraints

Entity entity - entity to examine

Linked List of Expression - this entity’ s constraints

Retrievethelist of constraints from an entity’ s "where" clause. Thislist should not be
LISTfree'd.

ENTITYget_initial_offset
Entity entity - entity to examine
int - number of inherited attributes

Retrievetheinitial offset to an entity’ slocal frame. Thisisthetotal number of explicit
attributes inherited from supertypes.

ENTITYget_instances

Entity entity - entity to examine

Linked List - list of instances of the entity

Retrieve an entity’ sinstance list. Thislist should not be L.ISTfree’'d.

Page 22

4.8

4.9

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:

Returns:
Description:

Construct

Type:
Supertype:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:

Description:

Entity

Type:
Supertype:

Procedure:
Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Stephen Nowland Clark

CSTput_vaue

Constant constant - constant to modify
Generic - value of constant

void

Set the value of a constant

Construct
-- none --

CONSTRget_line_number

Construct construct - construct to examine
int - line number of construct

Return the line number of a construct.

CONSTRIinitialize

-- none --

void

Initialize the Construct module. Thisiscalledby EXPRESSinitialize (), andso
normally need not be called individually.

CONSTRprint

Construct

void

Prints a construct. Exactly what is printed can be controlled by setting various
elements of the variable constr_print.

CONSTRput_line_number

Construct construct - construct to modify
int number - line number for construct
void

Set a construct’s line number.

Entity
Scope

ENTITY add_attribute

Entity entity - entity to modify
Variable attribute - attribute to add
void

Adds an attribute to the entity.

ENTITYadd_instance

Entity entity - entity to modify
Generic instance - new instance
void

Adds an instance of the entity.

Page 21

4.7

Constant

Type:
Supertype:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Constant
Symbol

CSTcreate

String name - name of new constant
Typetype - type of new constant
Generic value - value for new constant
Constant - the constant created

Create a new constant.

CSTget_name

Constant constant - constant to examine
String - the name of the constant

Return the name of a constant.

CSTget_type

Constant constant - constant to examine
Type - the type of the constant

Return the type of a constant.

CSTget_value

Constant constant - constant to examine
Generic - the value of the constant
Return the value of a constant.

CSTinitidize
-- none --
void

Stephen Nowland Clark

Initialize the Constant module. Thisiscalled by EXPRESSinitialize (), and so

normally need not be called individually.

CSTprint
Constant
void

Prints a Constant. Exactly what is printed can be controlled by setting various

elements of the variable cst_print.

CSTput_name

Constant constant - constant to modify
String - name for constant

void

Set the name of a constant

CSTput_type

Constant constant - constant to modify
Type - type for constant

void

Set the type of a constant

NIST Express Working Form Programmer’ s Reference

Page 20

4.6

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:

Returns:
Description:

Caseltem

Type:
Supertype:

Procedure:
Parameters:

Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:

Returns:
Description:

Stephen Nowland Clark

RULEput_where clause

Rule rule - rule to modify

Linked_List where - list of WHERE clause constraints for rule
void

Set the where clause of arule

Case_|tem
Construct

CASE _ITcreate

Linked List of Expression labels - list of case labels
Statement statement - statement associated with this branch
Error* errc - buffer for error code

Case_ltem - the case item created

Createanew caseitem. If the’labels’ parameteriSLIST NULL, acaseitem matching
in the default caseis created. Otherwise, the case item created will match when the
case selector has the same value as any of the Expressionson the labelslist.

CASE ITget labels
Case_|tem item - case item to examine
Linked List - list of case labels

Retrieve the list of label Expressionsfor which a case item matches. For an item
which matches in the default case, LIST NULL isreturned.

CASE_ITget_statement

Case_ltem item - the case item to examine

Statement - statement associated with this branch

Retrieve the statement to be executed when this case item is matched.

CASE ITinitialize

-- none --

void

Initiaizethe Case Itemmodule. Thisiscalledby EXPRESSinitialize (),andso
normally need not be called individually.

CASE_ITprint
Case_Item
void

Printsa Case_Item. Exactly what is printed can be controlled by setting various
elements of the variable case it_print.

CASE_ITresolve

Case _Item item - case item to resolve

Scope scope - scope in which to resolve

void

Resolve al symbol referencesin acaseitem. Thisiscalled, in due course, by
EXPRESSpass_2 ().

Page 19

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

ALGput_name

Algorithm algorithm - algorithm to modify
String name - new name for algorithm
void

Set the name of an algorithm.

ALGput_parameters
Algorithm algorithm - agorithm to modify
Linked List list - formal parameters for this agorithm

void
Set the formal parameter list of an algorithm. When
ALGget class (algorithm) == ALG RULE, theformal parametersshould be

the Entitysto which therule applies. Otherwise, they should bevariables.

ALGresolve

Algorithm algorithm - algorithm to resolve

Scope scope - scope in which to resolve

void

Resolve all references in an algorithm definition. Thisiscalled, in due course, by
EXPRESSpass_2 ().

FUNCqget_return_type

Function function - function to examine
Type - function’ s return type

Return the type of the function.

FUNCprint

Function

void

Printsafunction. Exactly what is printed can be controlled by setting various elements
of the variable func_print.

FUNCput_return_type

Function function - function to modify
Typetype - the function’ s return type
void

Set the return type of afunction.

RULEget_where clause

Rulerule - rule to examine

Linked List - list of rule's WHERE clause constraints
Return the where clause of arule.

RULEprint

Rule

void

Printsarule. Exactly what is printed can be controlled by setting various elements of
the variable rule_print.

Page 18

4.5

NIST Express Working Form Programmer’ s Reference

Procedure:
Parameters:
Returns:
Description:

Algorithm

Type:
Supertype:
Subtypes:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:
Parameters:
Returns:
Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Stephen Nowland Clark

PASS2initiaize

-- none --

void

Initialize the Fed-X second pass.

Algorithm
Scope
Function, Procedure, Rule

ALGget body

Algorithm algorithm - algorithm to examine

Linked List - body of algorithm

Retrieve the code body of an algorithm. The elements of the list returned are
Statements.

ALGget_name

Algorithm agorithm - algorithm to examine
String - the name of the algorithm

Retrieve the name of an agorithm.

ALGget_parameters
Algorithm algorithm - agorithm to examine
Linked_List - formal parameter list

Retrieve the formal parameter list for an algorithm. When
ALGget class (algorithm) == ALG RULE, thereturned list containsthe
Entitystowhichtheruleapplies. Otherwise, it containsvVariablesspecifyingthe
formal parameters to the function or procedure.

ALGinitidize

-- none --

void

Initializethe Algorithmmodule. Thisiscaledby EXPRESSinitialize (), andso
normally need not be called individually.

ALGprint

Algorithm

void

Prints an algorithm. Exactly what is printed can be controlled by setting various
elements of the variable alg_print.

ALGput_body

Algorithm algorithm - algorithm to modify

Linked List statements - body of algorithm

void

Set the code body of an algorithm. The second parameter should be alist of
Statements.

Page 17

4.4

NIST Express Working Form Programmer’ s Reference

Stephen Nowland Clark

The error codes are manipulated by the Error module [Clark90d]. Only error codes
unique to each routine, are listed after each description.

Working Form Manager

Type:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Express

EXPRESSdump_model

Express model - Express model to dump

void

Dump an Express model to stderr. Thiscall isprovided for debugging purposes.

EXPRESSfree

Express model - Express model to free

void

Release an Expressmodel. Indicates that the model is no longer used by the caller; if

there are no other references to the model, all storage associated with it may be
released.

EXPRESSinitialize

-- none --

void

Initialize the Express package. Thiscall in turn initializes all components of the
Working Form package. Normally, it iscalled instead of calling all of the individual
XXXinitialize () routines. Inatypical Express (or STEP) trandator, this
functioniscalled by thedefault main () provided intheWorking Formlibrary. Other
applications should call it at initialization time.

EXPRESSpass 1
FILE* file - Express sourcefile to parse
Express - resulting Working Form model

Parse an Express source file into the Working Form. No symbol resolution is
performed

EXPRESSpass 2

Express model - Working Form model to resolve

void

Perform symbol resolution on aloosely-coupled Working Form model (which was
probably created by EXPRESSpass_ 1 ()).

EXPRESSpass_3

Express model - Working Form model to report

FILE* file - output file

void

Invoke one (or more) report generator(s), according to the selected linkage
mechanism.

Page 16

4.3

Stephen Nowland Clark

LISTdo(list, ent, Entity)
ENTITYprint (ent, file);

LISTod;

LISTfree(list) ;

list = SCOPEget algorithms (scope) ;

LISTdo(list, alg, Algorithm)
ALGprint (alg, file);

LISTod;

LISTfree(list) ;

list = SCOPEget variables (scope) ;

LISTdo(list, wvar, Variable)
VARprint (var, file);

LISTod;

LISTfree(list) ;

list = SCOPEget schemata (scope) ;

LISTdo(list, schema, Schema)
SCEMAprint (schema, file);

LISTod;

LISTfree(list) ;

}
This function traverses the model from the outermost schemainward. All types, enti-
ties, algorithms, and variables in a schema are printed (in that order), followed by all
definitions for any sub-schemas. The only traversa logic required in
SCHEMAprint () issmply to call SCOPEprint ().

An approach which is taken in the Fed-X-QDES output module isto divide the logical
functionality of SCOPEprint () into two separate passes, implemented by functions
SCOPEprint passl () and SCOPEprint pass2 (). Thefirst passprintsall of
the entity definitions, in superclass order (i.e., subclasses are not printed until after their
superclasses), without attributes. This is necessary because of some difficulties with
forward references in Smalltalk-80. The second pass then looks much like the sample
definition of SCOPEprint () given above. This multi-pass strategy could also be
used to print, for example, al of the type and entity definitionsin the entire model, fol-
lowed by al variable and algorithm definitions.

Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-
cess routines and associated error codes for the Express Working Form. Each subsec-
tion below corresponds to a module in the Working Form library. The Working Form
Manager moduleislisted first, followed by the remaining data abstractions in al phabet-
ical order.

NIST Express Working Form Programmer’ s Reference Page 15

4.2

Stephen Nowland Clark

(FILE*) file);
SCHEMAprint ((Schema) schema, (FILE*)file);
print file trailer((Schema)schema,
(FILE*) file);
}
Theprint file () functionwill probably aways be quite similar to the one shown,
although in many cases, the file header and/or trailer may well be empty, eliminating
the need for these calls. In this case, SCHEMAprint () and print file () will
probably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol -
lowing note: In the final analysis, the output module really is a free-form piece of C
code. Thereisoneand only one rule which must be followed, and thisonly if the report
generator will be dynamically loaded: The entry point (according tothea . out format)
to the . o file which is produced when the report generator is compiled must be appro-
priateto be called withasSchema and aFILE*. The simplest (and safest) way of do-
ing thisisto adhere strictly to the layout given, and writeanentry point () routine
which jumpsto thereal (conceptual) entry point. But any other mechanism which guar-
antees this property may be used. Similarly, the layout of the rest of the code is purely
conventional. Thereisno apriori reason to write one output routine per data structure,
ortousetheprint file () routinesuggested. Thisapproach hassimply proved to
work nicely for current and past report generators, and seems to provide the shortest
path to a new output module. In other words, if you don't like the authors coding
style(s), fedl free to use your own techniques.

Traversing a Schema

Following the one-routine-per-abstraction rule, there are two general classes of output
routines. Those corresponding to primitive Express constructs (ENTITYprint (),
TYPEprint (), VARprint ()) will produce most of the actual output, while
SCOPEprint () (and, to alesser extent SCHEMAprint ()) will be responsible for
traversing the instantiated working form. A typical definition for SCOPEprint ()
would be:

void
SCOPEprint (Scope scope, FILE* file)

{

Linked List list;

list = SCOPEget types (scope) ;

LISTdo(list, type, Type)
TYPEprint (type, file);

LISTod;

LISTfree(list) ;

list = SCOPEget entities (scope) ;

NIST Express Working Form Programmer’ s Reference Page 14

4.1

Stephen Nowland Clark

the process described will be an object module (under Unix, a .o file) which can be
loaded into Fed-X. This module contains a single entry point which traverses a given
Schema and writesits output to a particular file.

The stylistic convention taken in the existing output modules, and which meshes most
cleanly with the design of the Working Form data structures, is to define a procedure
FOOprint (Foo foo, FILE* file) corresponding to each Working Form ab-
straction. Thus, SCHEMAprint (Schema schema, FILE* file) isthecon-
ceptual entry point to the output module; an Algorithm is written by the call
ALGprint (Algorithm algorithm, FILE* file), etc. With this break-
down, most of the actual output is generated by the routines for Type, Entity, and
other concrete Express constructs. The routines for Schema and Scope, on the other
hand, control the traversal of the data structures, and produce little or no actual output.
For this reason, it is probably useful to base new report generators on existing ones,
copying the traversal logic wholesale and modifying only the routines for the concrete
objects.

Note that the library has default definitions of object print routines, although they are
primarily for the purpose of producing human-readable descriptions. These may be
overridden by supplying new definitions as suggested above. Note, however, that over-
riding a built-in print routine may cause misbehavior of other built-in print routines
which depend on it.

L ayout of the C Source

The layout of the C source file for areport generator which will be dynamically |loaded
isof critical importance, due to the primitive level at which theload iscarried out. The
very first piece of C source in the file must bethe entry point () function, or the
loader may find the wrong entry point to the file, resulting in mayhem. Only comments
may precede this function; even an #include directive may throw off the loader.
An output moduleis normally laid out as shown:

void
entry point (void* schema, void* file)

{

extern void print file();
print file(schema, file);

}

#include "express.h"
actual output routines

void
print file(void* schema, void* file)

{

print file header ((Schema) schema,

NIST Express Working Form Programmer’ s Reference Page 13

364

3.6.5

Stephen Nowland Clark

Element 'self' is O (no attributes), 1 (some), or 2 (all). By default, itisset to 1 for linked
lists, dictionariesand symbols, and O for all other classes. By default, all other elements
are set to 1 (which means print, 0 means don't print). If 'self'is0, it isforced to 1 when
printed by itshigh level print function. (In other words, SCOPEprint (object) will
force the scope to be printed, while OBJprint (object) will print only if
scope_print saysto.)

Except for the 'self' element, element names are exactly the same names as the names
used in the hidden types. Classesthat have only one attribute use acommon print struc-
ture type with only a'self' element.)

For convenience, the prefix of the print structure (i.e., 'scope’ in'scope print'is
the same as the prefix used in the low-level functions (e.g., 'aggr 1lit print'is
used rather 'aggregate literal print').

Global Printing Options
The structure 'Print’ provides some additional control. Attributes are as follows:

'header’ controls whether header information such as class names are printed. By de-
fault, header is 1 meaning only the most specific classisdescribed. O disablesclassde-
scriptions, while 2 forces all class descriptions to be printed. Class specific data is
printed after each class header.

'depth_max' controls the depth of object recursion. By default, the depthis 2.

‘debug’ controls whether internal functioning of the print routines themselves are print-
ed. Thisisonly useful if you have some doubts about the correct functioning of the
print routines. Incorrect function has always turned out to be the case of something else
having sabotaged the environment, so this'debug’ element is more useful for reassuring
yourself that the environment (stack, heap, whatever) has not been corrupted.

Other elementsin 'Print’ are of value only to the implementation.

Printingto a File
By default, output is printed to the standard output. To redirect thisto afile, say:
p OBJprint file("foo")

To redirect back to the standard output and close the current output file:
p OBJprint file((char *)O0)

Writing An Output Module

It isexpected that acommon use of the Express WF will beto build Expresstrand ators.
The Fed-X control flow was designed with this application in mind. A programmer
who wishes to build such atranslator need only write an output module for the target
language. We now turn to the topic of writing this output module. The end result of

NIST Express Working Form Programmer’ s Reference Page 12

3.6

36.1

3.6.2

3.6.3

Stephen Nowland Clark

Default Print Routines

Thelibrary provides default print routines. Thisis oriented towards producing human-
readable text and can be overridden by defining a new subroutine by the same name.
However, asis, it provides a reasonable means of interactively browsing through the
Working Form, especially if the Working Form is’broken’, such as when Fed-X itself
is being debugged.

Thefollowing discussion assumes you are printing a Fed-X object from within gdb, the
GNU debugger.

Every class has a'print’ function

Printing Unknown Objects
Thus, to print out an object, say:
p OBJprint (obj)

Thisisuseful if you have no ideawhat the object is.

Printing Known Objects or Specific Classes of Objects
If you know 'obj' is a scope (or is a subclass of scope), you can also just say:
p SCOPEprint (obj)

For example, you can print out just the scope of an entity as:
p SCOPEprint (entity)

Alternatively, if you already have ahandleto the hidden structure, you can directly print
it out as:

p SCOPE print (scope)

(You can not print out the scope of an entity this way, since the hidden forms do not
inherit anything by themselves.)

Dataless classes may not necessarily have a print function, but can use print functions
defined for classes that have private data.

Printing Specific Object Attributes

Each class has a specia variable caled 'X print' (for example 'scope print’)
which determines which attributes of the scope are printed. For example, if you want
scope references to be printed, do:

set scope print.references = 1
set scope print.self =1

NIST Express Working Form Programmer’ s Reference Page 11

35

Stephen Nowland Clark

A module Foo iscomposed of two C sourcefiles, foo . c and foo . h. Theformer con-
tains the body of the module, including all non-inlined functions. The latter contains
function prototypes for the module, as well as all type and macro definitions. I1n addi-
tion, global variables are defined here, using a mechanism which alows the same dec-
larations to be used both for extern declarations in other modules and the actua
storage definition in the declaring module. These globals can also be given constant
initializers. Finadly, foo.h containsinline function definitions. In acompiler which
supportsinlinefunctions, thesearedeclared static inline inevery module which
#includes foo.h,including foo.c itsaf. Inother compilers, they are undefined
except when included in foo . ¢, when they are compiled as ordinary functions.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Accessfunctionsare named as FOOfunction () ; thisfunction prefix is abbre-
viated for longer abstraction names, so that access functions for type
Foolhardy Bartender might be of the form FOO BARfunction (). Some
functions may be implemented as macros; these macros are not distinguished typo-
graphically from other functions, and are guaranteed not to have unpleasant side effects
like evaluating arguments more than once. These macros are thus virtually indistin-
guishablefrom functions. Functionswhich areintended for internal use only are named
FOO_function(),andareusualy static aswell, unlessthisisnot possible. Glo-
bal variables are often named FOO variable; most enumeration identifiersand con-
stants are named FOO_CONSTANT (although these latter two rules are by no means
universal). For example, every abstraction defines a constant FOO_NULL, which rep-
resents an empty or missing value of the type.

If an instance of Foo might contain unresolved Symbols, then there is a function
FOOresolve (.. .), caled during Fed-X's second pass, which attempts to resolve
all such references and reports any errors found. This call may or may not require a
Scope as a parameter, depending on the abstraction. For example, an Algorithm
defines its own local Scope, from which the next outer Scope (in which the
Algorithmisdefined) can bedetermined; ALGresolve () thusrequiresno Scope
parameter. A Type, on the other hand, has no way of getting at its Scope, SO
TYPEresolve () requires a second parameter indicating the Scope in which the
Type isto be resolved.

Memory M anagement and Garbage Collection

In reading various portions of the Express Working Form documentation, one may get
the impression that the Working Form does some reasonably intelligent memory man-
agement. Thisisnot entirely true. The NIST PDES Toolkitisprimarily aresearch tool.
Thisis especidly true of the Express and STEP Working Forms. The Working Forms
allocate huge chunks of memory without batting an eye, and often this memory is not
released until an application exits. Hooksfor doing memory management do exist (e.g.,
OBJfree () andreference counts), and some attempt is made to observe them, but this
is not given high priority in the current implementation.

NIST Express Working Form Programmer’ s Reference Page 10

Stephen Nowland Clark

Class Class_ Foo;

Outside of Foo’smodule, wewill never seeastruct Foo. Wewill only seeaFoo,
which isactually an Object which ultimately pointsat astruct Foo.

31 Primitive Types

The Express Working Form makes use of several modules from the Toolkit general li-
braries, including the Class, Object, Error, Linked List, and Dictionary modules.
These are described in [Clark90c]. The underlying representation for all of the Work-
ing Form abstractions makes use of the Class and Object modules.

3.2 Symbol and Construct

All Working Form objects are subclassed from the types Symbol and Construct.
After the working form has been built, these types become, in Object-Oriented termi-

nology, abstract supertypes1 for the various types in the Working Form. The two are
quite similar, both in concept and in implementation. Both have an attribute containing
the line number on which the represented construct appearsin the source file (probably
useful only within Fed-X). A Symbol also includes a name and a flag indicating
whether the symbol has been resolved.

| Abstractions which represent nameable objects are subclassed from Symbol. These
include Constant, Type, Variable, Algorithm, Entity, and Schema. The
latter three are actually subclasses of another Symbol subclass, Scope. Other ab-
stractions (Case Item, Expression, Loop Control, and Statement) are
| subclassed from Construct.

3.3 Express Working Form Manager Module

In addition to the abstractions discussed in [Clark90b], 1 ibexpress . a contains one
more module, the package manager. Defined in express.c and express . h, this
module includes calls to intialize the entire Express Working Form package, and to run
each of the passes of a Fed-X trangdlator.

34 Code Organization and Conventions

Each abstraction isimplemented as a separate module. Modules share only their inter-
face specifications with other modules. There is one exception to thisrule: In order to
avoid logistical problems compiling circular type definitions across modules, an Ex-
press Working Form module includes any other Working Form modules it uses after
defining its own private struct. Thus, the types defined by these other modules are
not yet known at the time an abstraction’s private st ruct is defined, and references
to these other Working Form types must assume knowledge of their implementations.
This s, in fact, not a serious limitation: Each Working Form types is implemented as
an Object, which is defined when the st ruct is compiled.

| 1. During the generation of the Working Form, many Symbo1s are not abstract supertypes.

NIST Express Working Form Programmer’ s Reference Page 9

2.3

Stephen Nowland Clark

preted as either, the parser always assumes that it is a simple identifier. When the
second pass determines that one of these objects actualy refers to a function, the
Identifier expression is replaced by an appropriate Function Call expres-
sion.

Thus, the result of the second pass (in the absence of any errors) is atightly linked set
of structures in which, for example, Function Call expressions reference the
calledAlgorithms directly. Atthispoint, itispossibleto traversethe data structures
without resorting to any further symbol table lookups. The scopesinthe Working Form
are only needed to resolve external references - e.g., from a STEP physical file.

Third Pass: Output Generation

Thereport or output generation pass manages the production of the various output files.
Control isessentially handed over to the application-programmer-supplied output mod-
ule loaded at build time.

In theory, the module could do anything, but more typically, the output module trans-
lates the Working Form into some other form such as a human-readabl e report, or input
to an SQL database.

A report generator is an object module, most likely written in C, which has been com-
piled as a component module for alarger program (i.e., with the - c option to a UNIX
C compiler). The code of this module consists of calls to Express Working Form ac-
cess functions and to standard output routines. A detailed description of the creation of
anew output module appearsin section 4.

Working Form Implementation

The Express Working Form data abstractions are implemented in Standard C
[ANSI89]. Standard C is not essential to Fed-X, and some effort has been taken to
make the source Classic C compatible but thiswork isnot complete. Application mod-
ules (i.e., output modules) can be written in either Standard C or Classic C.

Each abstraction is implemented as one or more classes, using the Class/Object
modulesin 1ibmisc [Clark90c]. The data specific to aparticular classis encapsulat-
edinaprivate C struct. Thisstructureis never manipulated directly outside of the
abstraction’s module. For example:

/* the actual contents of a Foo */
struct Foo {

int 1i;

double d;

}i
typedef Object Foo;

/* Class Foo is created in FOOinitialize() */

NIST Express Working Form Programmer’ s Reference Page 8

2.1

2.2

Stephen Nowland Clark

Fed-X Control Flow

A Fed-X trandator consists of three separate passes: parsing, reference resolution, and
output generation. The first two passes can be thought of as a single unit which pro-
duces an instantiated Working Form (WF). This Working Form can be traversed by an
output modulein thethird pass. It isanticipated that userswill need output formats oth-
er than those provided with the NIST Toolkit. The process of writing areport generator
for anew output format is discussed in detail in section 4.

First Pass. Parsing

Thefirst pass of Fed-X isafairly straightforward parser, written using the Unix™ pars-
er generation languages, Y acc and Lex. Aseach construct is parsed, it is added to the
Working Form. No attempt is made to resolve symbol references: they are represented
by instances of the type Symbol (see below), which are replaced in the second pass
with the referenced objects.

The grammar used by Fed-X is processed by Yacc or Bison (a Yacc clone available
from the Free Software Foundationl). The lexical analyzer is processed by Lex or

Flex?, afast, public domain implementation of Lex. Generally, Flex and Bison arefast-
er and provide more features. For portability, some of these features are avoided by
Fed-X even though such use might make the result simpler and faster (such asthe mul-
tiple start condition machinary offered by Flex). When easily handled (such as by con-
ditional compilation (#ifdef .. #endif pairs)), certainfeaturesof Flex and Bison
aretaken advantage of. Ingeneral, Flex and Bison are prefered over Lex and Yacc. The
choice is controlled by the Makefile (and make _rules) that directs the building of the
system.

Second Pass: Refer ence Resolution

The reference resolution pass of Fed-X walks through the Working Form built by the
parser and attempts to replace each Symbol with the object to which it refers. The
name of each symbol is looked up in the scope which isin effect at the point of refer-
ence. If adefinition for the name is found which makes sense in the current context,
the definition replaces the symbol reference. Otherwise, Fed-X printsan error message
and proceeds.

In some cases, the changes which must be made when asymbol is resolved are dightly
moredrastic. For example, the syntax of Express does not distinguish between an iden-
tifier and an invocation of a function of no arguments. When a token could be inter-

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the UNIX operating system and environment.
These tools are not in the public domain: FSF retains ownership and copyright priviledges, but grants free
distribution rights under certain terms. At thiswriting, further information is available viaelectronic mail on
the Internet from gnu@prep.ai.mit.edu.

2. Vern Paxson’sFlex isusually distributed with GNU software, although, being in the public domain, it does

not come under the FSF licensing restrictions.

NIST Express Working Form Programmer’ s Reference Page 7

NIST Express Working Form
Programmer’s Reference

Stephen Nowland Clark
Don Libes!

1 | ntr oduction

The NIST Express Working Form [Clark90b], with its associated Express parser,
Fed-X, is aPublic Domain set of software tools for manipulating information models
written in the Express language [Part11]. The Express Working Form (WF) is part of
the NIST PDES Toolkit [Clark90a]. This reference manual discusses the internals of
the Working Form, including the Fed-X parser. The information presented will be of
useto programmerswho wish to write applications based on the Working Form, includ-
ing output modules for Fed-X, aswell as those who will maintain or modify the Work-
ing form or Fed-X. Thereader isassumed to be familiar with the design of the Working
Form, as presented in [Clark90b].

1.1 Context

The PDES (Product Data Exchange using STEP) activity isthe United States' effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors
CAD/CAM systems and other manufacturing-related software [Mason91]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
isfunded by the Computer-aided Acquisition and Logistic Support (CALS) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating STEP data. ThisNIST PDES Tool-
kit isan evolving, research-oriented set of softwaretools. Thisdocument isone of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

1. Don Libesis responsible for the minor changes made to this document to track the actual implementation
of the software described. However, credit for the bulk of the document, its style, and the implementation of
the NIST Express Working Form remains with Stephen Nowland Clark. Recent changes are denoted by a
change bar to the left of the text.

NIST Express Working Form Programmer’ s Reference Page 6

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology isintended or implied.

Unix isatrademark of AT& T Technologies, Inc.
Smalltalk-80 is atrademark of ParcPlace Systems, Inc.

Stephen Nowland Clark

5 ExpressWorking Form Error Codes........cccceevieeeiieeciieevciee e, 55
B BUIlAING FEA-X ..o 59
7 Building Applicationswith Fed-Xccccoooiiieiieciie e 61
AppendixX A: REFEreNCeS.......coooi s 62

Page 4

Table Of Contents

I 01 A o [1 T A o o ISP 6
1.1 CONLEXT ...ttt sttt e e b e e e ne e n e s ne e ne e neeennis 6

2 Fed-X CoNtrol FIOWcooiiiiiiiecieieeee e e 7
2.1 FIrst PasS: PalSiNg.......cccoieiiniiriiniiseeeeee et sse s 7
2.2 Second Pass: Reference ReSOIULION.........coviveriieninieeeee e 7
2.3 Third Pass. OULPUt GENENaLIONcceeriererieerieeie e 8
3Working Form Implementationcccccevceeiiieevcee v, 8
. L PrMITIVE TYPES...cctieieceeesteeieeeesteeie st steete et ae e eae e e sseesesnaesseenseens 9
3.2 Symbol and CONSEIUCE...........occiieiieciee e 9
3.3 Express Working Form Manager Module.............cocoorieiiencnenenenee 9
3.4 Code Organization and CONVENLIONS...........cccuereererieereeeeseesseseesreesseeeens 9
3.5 Memory Management and Garbage Collection..........c.cccccevcveieevinccieenen. 10
3.6 Default Print ROULINEScooiiiriiereeeeee e 11
3.6.1 Printing Unknown ODJECLS.........cccueveieesieie e 11

3.6.2 Printing Known Objects or Specific Classes of Objects................... 11

3.6.3 Printing Specific Object AttribULES..........cccceeeeiieieeeereeeee 11

3.6.4 Global Printing OPtioNS...........cccvveierieiien et 12
3.6.5Printingto @Rl ...cueeeecee e 12

4 Writing An Output Module ..o, 12
4.1 Layout Of the C SOUICE........cceeieeeereese e 13
4.2 TraversiNg @ SCNEMAL........covieieeeceese e 14
4.3 Working FOrmM ROULINEScoouerieiieieeee e et 16
4.4 Working FOrmM ManagErcocveieiienienenesesiesese e 16
3N o o 11 1 o TSR 17
4.6 CASE ITOIM ...t e sa e e an e 19
A o | SRR 20
4.8 CONSITUCTc..eeeeeeeteesiee ettt b e me e smn e e sneesnneesneennne e 21
e 0 SR 21
4,10 EXPIESSION.....couviieriiitesiesiieieeiee ettt s et sae b e 26
g I I 0o o I 0 1 o) [T 34
D = £ (= 3 TSR 36
I IS0 1= 1 7 VS 36
oo o< TSR SPPRPRN 37
415 SEALEMENT ...ttt be e e re e sae e e sae e sane e sneesane e 40
416 SYMDO ...ttt 44

T A 1Y/ oSS RRUSPPRPIN 45
L USRS 52
LS Y= o SR 52

NISTIR 4814

National PDES Testbed
Report Series

Sponsored by:

U.S. Department of Defense
CALS Evaluation and NATIONAL

Integration Office - r N IST EXprESS
The Pentagon Working Form
Washington, DC 20301-8000 TEcrar- Programmer’s

Reference

U.S. Department of Commerce

Barbara H. Franklin, Secretary Revised April, 1992

Technology Administration Stephen Nowland Clark

Undersecretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director VT OF ¢
",

>

W0 DERg4
& i
<
%,
R CA 20¥

April 3, 1992 STares of

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National PDES Testbed
Report Series —
NIST Express
Working Form
Programmer’s
Reference
Revised April, 1992
NATIONAL
» r Stephen Nowland Clark
g Don Libes
TESTBED ™
April 3, 1992

NIST

